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Abstact. This paper describes the following results in Nambu mechanics: the definition of 
simple physical systems; the result o f  applying the KBlnay and Tascbn theorem to the study 
of diiierent groupings of then phase space variables into an $-coordinate and an (n-s ) -  
momentum; the study of the intrinsic geometry of the cuwe that solves the Nambn equations 
of motion by explicit COnstNCtion of the local coordinate system; the construction of sets 
of Hamiltonians that generate the Same set of differential equations; a way to construct 
canonical transformations; a study of the intrinsic geometry of a system known to have 
chaotic behaviour: the Lorenz model and the correspondence of an oscillating Nambu 
system as the classical analogue of a simple version of the Hubbard model for 
superconductivity. 

1. Introduction 

This paper describes a number of developments in Nambu mechanics that fall into two 
categories: the first one concerns structural aspects (in the form of very general results) 
while the second is devoted to a number of particular cases whose aim is to illustrate 
known theorems or to define specific systems (like the free particle, the harmonic oscilla- 
tor and the like). One important point that is not considered in this paper is the physical 
meaning-or either their relation to measurable quantities in the laboratory-of the 
parameters that appear in the (n- 1) Hamiltonians that define a Nambu system in an 
n-dimensional phase space. 

As a start it is convenient to recall that Nambu mechanics is a generalization of 
Hamiltonian mechanics whose most relevant feature is that it admits a phase space of 
even or odd dimension. The variables that span phase space are the coordinates of the 
vector x=(xI, x2, . . . , x.). The time evolution of a dynamical variable F(x) in an n- 
dimensional phase space is specified by ( n -  1) functions of the n variables Hi(x), 
i= I ,  2,. . . , n -  1-lled the Hamiltonians of the system-through 
dF(x)/dt=[F, H i , .  . . , H.-il=J(F, Hi,. . . , Hn-i)/J(~g,. . . ,x,J (1.1) 
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where the notation [fi ,f2, . . . ,f.] defines a generalized bracket with n places and 
a(.  . .)/a(. , .) is a Jacobian of order n. From t h i s  definition it follows at once that the 
generalized bracket is antisymmetric and behaves as a derivative. 

If any of the Hamiltonians is substituted in (1.1) in place of F(r) it tums out that 
the bracket vanishes; then all Hj(x)  are constants of the motion. They correspond to 
the integral surfaces of the set of coupled differential equations that describe the time 
evolution of the coordinates xi.  

vr=dxi/df=[xi, H I , .  . . , H,,-I]. (1.2) 
The cur;e that solves the set (1.2) corresponds to the intersection of all these snr- 

faces. In this sense Nambu mechanics uses the maximal information necessary to solve a 
system of coupled differential equations; namely, all its integral surfaces. The algorithm 
specified by Nambu generates completely integrable systems. If it is assumed that a 
point in the cuwe represents a state of a physical system then by describing a solution 
as the intersection of the integral surfaces of (1.2) there is no information as to how 
the point moves along the curve. This is specified if another surface, now explicitly 
time-dependent, of the form W(x, f) = C with C a constant, is added so that the specific 
motion is obtained as the intersection of the curve with the surface W(x, t )  = C. This 
is the method described by Cohen (1975). A direct consequence of (1.2) is that the 
Liouville condition is automatically satisfied, explicitly 

jj a v j /ax j=o.  (1.3) 
r r - I  

Canonical transformations are defined as those changes of independent variables such 
that the Jacobian equals one; gauge transformations are defined as changes in the 
functions H,(x) to new functions, say, G,(x) such that the Jacobian 

a ( ~ ~ ,  . . , , G ~ - , ) / ~ ( H ~ ,  . . . , ~ “ - , ) = i .  (1.4) 
These are the basic facts of Nambu mechanics that will be used in the sequel so that 
for further details the reader is referred to Nambu’s paper (Nambu 1973) (in particular 
for alternative definitions of the time evolution law of dynamical variables). Other 
aspects are discussed in Cohen (1979, Cohen and Kdlnay (1975), Ruggeri (1975,1981), 
Hirayama (1977), Oliveira (1977), Kilnay and Tas& (1978), Kobussen (1978), 
Angulo et ai (1984), Codriansky and Gonzalez (1987). 

Now a brief summary of the main criteria and results of this paper will be exhibited. 
One of the important results in the study on Nambu mechanics is the Kdlnay and 
Tasc6n (1 977) definition of what is meant by a coordinate and its canonically conjugate 
momentum-see section 2 for a brief summary of this result. It is natural to consider 
that two different groupings of then phase space coordinates into an s-coordinate and 
an (n-sf-momentum ( I G s G n )  define two different mechanical systems; with this in 
mind we ask whether this is in fact true or on the contrary that all groupings are 
equivalent. We say that two groupings are equivalent if they are connected by a canon- 
ical transformation, a gauge transformation or a combination of both. I t  is found that 
in three-dimensional phase space the two possible groupings are equivalent while in 
four dimensions, of the three possibilities there is one grouping that is not equivalent 
to the other two: it is the one in which the four coordinates are separated into a two- 
coordinate and a two-momentum which in the specific case considered below corre- 
sponds to two Hamiltonian doublets. The same feature repeats in higher dimensions. 
Another result is the definition of a singlet (Codriansky and Gonzalez 1987); one 
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interesting result is that the condition to be satisfied so that in two-dimensional phase 
space the doublet can be considered as two singlets is that the function that describes 
the time evolution of the doublet and the function that describes the time evolution of 
the two singlets be the real and imaginary parts of an analytical function. 

The next point that is considered is the definition of elementary systems like the 
free particle and the harmonic oscillator. The basic idea io the definition is to maintain 
the general structure of the differential equations that define these systems in Hamil- 
tonian mechanics. In this spirit the harmonic oscillator is described by a system of 
coupled differential equations that has the U ,  written as a linear combination of the x i .  
For each case at least one set of Hamiltonians is exhibited and in the case where more 
than one set is found the relevant canonical and/or gauge transformation is computed. 
This result is similar to the one found in Lagrangian mechanics where different Lagrang- 
ians can give rise to the same equation of motion (Okubo 1980). It is tempting to say, 
in the light of this result, that a physical system is defined by its evolution equation 
and not by its Hamiltonians; this is the standpoint adopted in~this paper. In this way 
it is possible to characterize a given system by the simplest set of Hamiltonians or by 
any adequate representative of the equivalence class of the sets that generate a given 
equation of motion. 

Next the study of more specific points is attacked. Among these: in three-dimen- 
sional phase space the intrinsic geometry of the solution to (1.2) is written down in 
terms of the Hamiltonians that characterize the system. The basic assumption is that 
the geometry of phase space is Euclidean so that the well known Frenet-Serret equations 
are translated into the language of Hamiltonians. If the same case is studied in four- 
dimensional phase space it is found that two more functions-together with the curva- 
ture and torsion-have to be included. When studying harmonic systems-the so-called 
Nambu harmonic oscillator-it is found that whenever the dimension of phase space 
is odd there is one root of the secular equation that vanishes so tbat the oscillating 
system is, in fact, even-dimensional. Another point studied refers to a specific way of 
constructing transformations by using both the canonicity and the gauge conditions. 

The paper is organized as follows: in section 2 the Kilnay-Tasc6n theorem (Kblnay 
and Tasc6n 1977) is summarized; section 3 deals with two-dimensional phase space; in 
section 4 the intrinsic geometry in dimension n is discussed; section 5 presents canonical 
transformations and in section 6 physical systems are studied, among them the Lorenz 
model and a specific version of superconductivity. 

Notation and conventions: boldface letters denote vectors, the summation convention 
is used throughout, do denotes Dirac’s delta function, ai= a/&,, the Kilnay-Tascon 
(1977) result will be called the KT theorem. 

2. A short summary of the Kilnay-Tasc6n theorem 

The KT theorem defines what has to be understood by momenta conjugate to a coordi- 
nate in Nambu mechanics. The construction is done in such a way that a Lagrangian 
need not be used nor the specific form of the bracket that generates the time evolution 
of a particular system. In order to achieve the generalization from the usual classical 
mechanics (non-constrained Lagrangian or Hamiltonian mechanics) the main idea is 
to construct a mathematical object that resembles the Poincard integral invariant of 
classical mechanics. Explicitly the construction goes as follows: assume the dimension 
of the Nambu phase space is n and that the set of n variables is separated in m groups 
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with k variables each so that km=n. Phase space consists of m kyplets. Next consider 
an integer s such that 1QsQk so that in each particular k-plet a set of s (real or 
complex) functions of then coordinates is formed; this set is called an s-coordinate. If 
to the s-coordinate it is possible to add a set of ( k - s )  functions so that 

satisfies 

' d.Ji/dt=O (2.2) 

where r labels each multiplet, the qs are the functions that define the s-coordinate and 
thefs define the so called (k-s) Poincari-momentum. Of course the above theorem 
remains true if each q is identified with a particular coordinate. This particular case 
follows from the fact that the Liouville condition is automatically satisfied in Nambu 
mechanics-at least in the version that is being used in the present paper. In view of 
this result in each of the multiplets a particular group of s coordinates is an s-coordinate 
and the remaining (k-s) is the (k - s )  Poiucark momentum. In the cases considered in 
the present paper only one multiplet is present so that all examples are in fact a very 
particular case of this theorem. For further details see Kglnay and Tasc6n (1977). 

3. Two-dimensional phase space 

Consider two-dimensional phase space and denote the independent variables by x= 
(xI , x2). If the variables are required to define a Hamiltonian doublet then one is chosen 
as the coordinate and the other as the canonically conjugated momentum. The time 
evolution of xI and x2 is given in terms of the Hamiltonian H(x) in the usual way 

V I  =dxl/dt=&H vz=dx,/dt= -&H. (3.1) 
If. on the other hand, they are considered as a pair of singlets the evolution equations 
are different since in this case the relevent bracket is not the usual Poisson bracket but 
a symmetric bracket. In fact, as has been defined in Codriansky and Gonzalez (1987) 
the time evolution is computed in terms of a function G(x)  as 

SI = dxi/dt = dl  G S2 =dx,/dt =&G. (3.2) 

aZH=a,G -alH=aaG (3.3) 

If it is now required that uI =SI and v2=Sz the following equations are obtained 

which are the Cauchy Riemann conditions for the real and imaginary parts of the 
analytic function J=H+iG. If this condition is fulfilled then both descriptions are 
equivalent. This means that a given physical system can be considered either as a 
Hamiltonian doublet or as a pair of Nambu singlets. It is worthwhile to notice that the 
Liouville condition is automatically satisfied in the case of the Hamiltonian doublet 
while it is a limitation on G ;  only those G that are harmonic functions are candidate 
to satisfy (3.3)-then the companion H i s  also a harmonic function as is evident from 
(3.3). The two singlets are not independent but are in interaction as follows from the 
evolution equations. Also, while H is a constant of the motion G is not as can be easily 
checked from (3.1) and (3.2). An extremely simple example is G(x)=-2n x,x2, 



Developments in Nambu mechanics 2569 

H(x)=a(x:-.x$),  where a is an arbitrary real constant, whose general solution is XI = 
xz=Aexp (-2at), A constant. 

As a preparation for future developments it is easy to write the Frenet-Serret eqna- 
tions that describe the way in which the local coordinate system defined by the unit 
tangent a d n o r m a l  vectors vanes with time-only the system described by (3.1) is 
considered. Call T the unit tangent vector. The Frenet-Serret equations are then 

dT/dt = kN dN/dt= -kT (3.4) 
where N is the normal to the curve and k = k ( x )  is the curvature. If use is made of the 
evolution equations then it is found that k is completely determined once the Hamil- 
tonian is fixed; in fact, from (3.1) the unit tangent vector is fixed by the Hamiltonian 
and from the definition of the unit normal vector Nit  is found that its explicit expression 
is fixed by H.  Since k=k(x )  is defined as the norm of the vector (U], vz)  it follows that 
H determines completely the intrinsic geometry of the curve that satisfies (3.1). The 
expression for the curvature is 

U’@= (ai I H)2(a2H)4+ H ) 4  

+ 2 [ 2 ( 8 1 z H ) ~  + 81 I Ha:H](&H)’(&H)’ 

-4aiHazHdi~H[(a,iH)(azH)~+ (aiH)’(&zH)] (3.5) 

3 = ( a l H ) 2 +  (a2H)z.  (3.6) 
As a last comment a canonical transformation is one to new coordinates y l ,  y2 with 

unit Jacobian. As a particular case, if the transformation is linear it is an element of 
SO(2). A gauge transformation reduces in this case to a simple addition of an arbitrary 
constant to H,  the KT theorem is trivial in this case since a singlet is not considered in 
it. Finally, the only possibilities that can be considered in two-dimensional phase space 
are (i) a pair of singlets and (ii) one coordinate and its momentum canonically conjuga- 
ted-which is, of course, the ordinary Hamiltonian doublet. 

where 

4. The intrinsic geometry in dimension n 

Consider n-dimensional phase space. The independent variables are x= ( X I ,  . . . , x.) 
and the evolution equations are 

v,=dxi/dt=a(xj, H j ,  H , .  . . ,x,,) (4.1) 

the ith component of the tangent vector is defined as 

r= v; /v (4.2) 

where v is the norm of the vector (U], . . . , u,J, v ’=C U:. Next define the normal vector 
in the usual way as the vector N with components N; given by 

T Ni= dT,/dt, (4.3) 
where T = C  T,’. 

Following the above procedure a set of n vectors is constructed in such a way that 
all are of unit length and each one orthogonal to the other ( n -  I)-the construction 
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can fail if a constant vector is obtained in any of the (n-2)  first steps. It is easily seen 
that all vectors are expressed completely in terms of the (n- 1) Ha&ltonians that define 
the system of coupled differential equations. Now the Frenet-Serret equations can be 
derived without difficulty. To this end it is necessary to consider the local coordinate 
system for two very near values of time' and compare them. The result is a set of 
equations that describe the variations of the unit vectors when moving from one point 
to a neighbouring one. Denote the n vectors as Vi,  i= 1, . . . , n and its components as 
V,(k), k =  I , .  . . , n. Then 

. dVj/dt=CaixVk (4.4) 

where the coefficients a,k are given by 

aik ( 1 7 &)bik (4.5) 
with d i k=O if i # k  and djk= 1 if i=k .  Now V; Q=O implies 

aik=-aE (4.6) 
a relation that fixes the general structure of equations (4.4). A particular case are the 
relations in (3.4) for n=2.  However, because of the particular form of (4.4) for i= 1 
other relations appear; in fact, fori= 1: al2=curvature and aik=O if k#2 .  This implies 
akl =O if k#2 .  With this, all results have been obtained to describe the local coordinate 
system. 

In order to complete the description of the intrinsic geometry of a solution to a 
Nambu problem i t  i s  necessary to express all geometric quantities in tenns of the 
Hamiltonians of the system. The arc length is 

(4.7) 

which can be used (if convenient) as the parameter that labels points on the curve. 
Since time is not the arc length-xcept in very special caseGall expressions will be 
written in terms of time derivatives which are computed as functions of the Hamiltoni- 
ans. In this way all the geometry is related to the H i ;  more precisely, the ( n -  1) 
Hamiltonians define (n- 1) vectors at each point of the curve-the normals to the 
surfaces Hi= Cj,  i =  1, . . . , n -  I-to which another vector can be added that is ortho- 
gonal to all of them. After orthonomalizing this set, the local coordinate system is 
completely defined and can be related to the vectors that appear in the Frenet-Serret 
equations by an orthogonal transformation that is a function of the particular point 
of the curve. This means that the set of vectors constructed from the normals to the 
integral surfaces may not evolve in time according to the Frenet-Serret equations. 

Remark 4.1. In ffamiltonian mechanics it is possible to proceed as in the Nambu case 
defining the tangent vector, the normal and so forth until the Frenet-Serret equations 
are obtained in a phase space of dimension 2k. The main difference between the Nambu 
and Hamilton cases lies in the possibility of constructing the local coordinate system 
using the normals to the integral surfaces in Namhu mechanics while in Hamiltonian 
mechanics there are not enough known integral surfaces. 

Remark 4.2. Up to this point it has been assumed that the underlying geometry of 
phase space is Euclidean. This assumption can be relaxed to consider a geometry defined 
by an arbitrary metric tensor g,,(x); then (4.7) is changed to 

(4.8) gjpjuj d12 =E gt [xi. . . . , H.- I J [xj, . . . , Hn- I] dtz 
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which implies that all expressions have to be modified accordingly, In particular, when- 
ever scalar products appear, the metric tensor should be included. Thus, the definition 
of curvature will now be 

k2= k(x)'=C gijvivj (4.9) 

and similarly for all other quantities. It is an interesting problem to relate the underlying 
geometry to the properties of the Hamiltonians. This will not be touched here. 

Remark 4.3. The system of equations (4.4) that define the Frenet-Serret equations can 
he considerGd as a Namhu system in the variables Vi (we thank I Cohen for calling our 
attention to this point) if the Liouville condition is satisfied. Now phase space is of 
dimension 2. Since the coefficients ai* depend on x it is necessary to eliminate them as 
functions of the Vi@); once this has been achieved, the system can be considered as a 
proper Nambu system if the Liouville condition is satisfied. To write the x,5 in terms 
of the Vzks it is enough to consider a group of n functions out of the izz a v a i l a b l e 4 1  
them Xi (x), i= I , .  . . , n-such that a(&, . . . , K.)/a(xl, . . . , x.) #O;  in this case the 
inversion is possible. Returning to the system (4.4) it is easily verified that the Liouville 
condition is not satisfied automatically. In the present case this condition takes the 
form BkiVk,=O where B~=aak~/aV,r .  The vanishing of the above expression ensures 
that the Nambu scheme is applicable. However, to find the Hamiltonians in the general 
case is an almost impossible task because of the unknown nature of the functions 
ne( VI, . . . , VJ. If it happens that the a,k are constants then the set of Hamiltonians is 
easily known: one of the Hamiltonians is quadratic while all the others are linear in 
the V,. This remark is important in the sense that the Frenet-Serret~equations do not 
introduce additional algebraic structures in the study of the Nambu system. 

4.1. The particular case n=3  

In this subsection the explicit expressions for the unitary vectors, the curvature and 
torsion for n=3 are presented. The Nambu equations for this case are 

u'=&/dt=grad Hl xgrad Hz. 

Using (4.10) the results are 

(4.10) 

T= R grad H, x grad Hz = R grad HI x grad H2 (4.11) 

where R and R' are given by 

R-'= lgrad HII2lgrad H2I2- (grad HI. grad H2)' (4.12) 

R'-'=lgradHII IgradHzlsinp (4.13) 

and p is the angle between g a d  HI and grad Hz. The arc length ds is given by 

& R-+Jt2 = R'-'dt2 (4.14) 

the tangential acceleration is (~'=ds/dt) 

s' s"= {[lgrad HzlZ(grad HI. grad)grad HI + lgrad H1I2(grad Hz.  grad)grad HJ 

- (grad Hl. grad Hz)[(grad HZ . grad)grad HI 

+ (grad HI. grad)grad H z ] }  . (grad HI x grad H2) (4.15) 
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and the normal vector N 

N=(IdT/dlls’)-’ {grad~’~/2-axcurl  U 

- (grad H I  x grad Hz) .  D(grad HI x grad Hz)}  (4.16) 

where D=[grad(ln(lgrad HII lgrad H21)+cot p grad 81. Finally, the binormal is 

E= T x  N=(IdT/dtls’)-’ux (u.grad)u (4.17) 

where all quantities are defined in terms of the Hamiltonians. 

Example 1. Consider the well known problem of acharged particle moving in a uniform 
magnetic field B=(O, 0, B) and uniform electric field E= (E, 0,O). Then the equations 
for the components of the velocity satisfy a system of equations that can be cast in the 
form of a Nambu system (Razavy and Kennedy 1974, Steeb and Enler 1991) (a, b and 
g constants) 

dv,/dt = -2ab(vz-g) dvz/dt = 2ab uI dv3/dt = 0 (4. IS) 
with Hamiltonians 

H ,  =a v3 Hz = b[(Vz-g)’+ v:] . (4.19) 

If the intrinsic geometry of the curve that solves this system is described it is found 

k2= {v:+(v2-g)’}-’ t = O .  (4.20) 

that the torsion is zero while the curvature is constant. The explicit results are 

The curve is a circle which is, of course, the known result. 

Example 2. Consider the Lorenz model (Lorenz 1963, Steeb and Euler 1991) described 
by the system of differential equations 

(4.21) 

(4.22) 

(4.23) 

where s, h and b are arbitrary parameters. It is shown by Steeb and Euler (1991) that 
the system (4.20)-(4.22) is integrable if h= 0 and that in this case a pair of -at mmt- 
quadratic Hamiltonians is 

2Hi =-U: + u : + u ~  2H2= -U:+ 2U3. (4.24) 

From these Hamiltonians the following expressions are found for the curvature (k) and 
torsion ( t )  

k2=S-’{u?( 1 -U$+ U:( 1 - U P  -d)’+(d+ U:( I - u3))’} 

-s’u:4{(l -u3)(2-u3) +U:} (4.25) 

t = k 2 S 3 ’ 2 3 U I U 2 [ (  1 - u3)2+ 41 {U?( 1 - u3) - d }  (4.26) 

where S=u:+ U:( 1 - u,)~ + It is seen that if u3 > 1 the sign of the curly bracket in 
(4.26) is always negative while if u3 < 1 the sign is not defined but depends on the 
specific values of uI and U’. As a result the value u3=I separates different types of 
behaviour of the solution curves to (4.20)-(4.22). Chaotic behaviour of the system 
shows in the vicinity of u3= 1 since a tiny variation in the numerical values of the 
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constants HI and Hz and in the initial conditions implies very different behaviour of 
the solution. 

Example 3. Consider four-dimensional phase space. The intrinsic geometry is described 
by four-vectors which satisfy the following Frenet-Serret equations 

dT/dt=kN (4.27) 

dN/dt =-kT+ tB+rB‘ (4.28) 

dB/dt=-fB+sB’ (4.29) 

dB’/dt = -rN-sB (4.30) 

where it is seen that if r=O and s=O the three-dimensional Frenet-Serret equations are 
recovered. As usual in this case it is assumed that the underlying geometry is Euclidean. 
The intrinsic geometric behaviour is determined by the four functions k =k(x) ,  t = f ( x ) ,  
r=r (x )  and s=s(x)  wherex=(x,, X Z ,  x3,xq). 

As an extremely simple example consider the following group of three Hamiltonians: 
2HI=B(x:+x:),2H2=$and H3=xI+x2+x3+x4. Then the curve is plane and the 
only non-zero function is the curvature. Its expression is 

Y =  3P$(d+d)’[2(x:+x: -,x2x3)]-Z. (4.31) 

Example 4. The inverse problem is interesting. I n  this case the intrinsic functions are 
known and the Hamiltonians are required. It is possible to exhibit explicit solutions in 
very simple cases as for instance if the curve is confined to a plane; under these condi- 
tions one of the Hamiltonians is quadratic and all the others are linear in the indepen- 
dent variables. 

5. Canonical transformations 

This section describes a particular way to generate canonical transrormations in Nambu 
mechanics. Mo,re general approaches have been studied elsewhere (Marin 1975) where 
the general form of the generating functions have been given. These results will not be 
described here since they are not directly related to the results that follow. The aim is 
to exhibit a procedure to generate a canonical transformation that uses simultane’ously 
the fact that the Jacobian of the transformation from a set of coordinates to a new one 
is unity and the fact that in a gauge transformation the Jacobian of the transformation 
from a set of Hamiltonians to a new one has to be unity also. So consider the following 
situation: two sets of coupled differential equations are given each with the correspond- 
ing set of Hamiltonians that generate the system of equations by using the Nambu 
algorithm, then the transformation that connects both systems of equations is required. 
This transformation will be generated as follows: call one set of variables x and the 
corresponding Hamiltonians Hj(x) ,  i= 1,2, . . . , nand the second sety with Hamiltoni- 
ans Gj(y), j= 1,2,. . . , n. Now to transform the variables x into the variables y-or 
vice versa-set Hi(x) = G,(y) i= 1,2, ~. . . , n ;  this expresses xI , x2, . . . , n.- I on terms 
of the ys and at the same time ensures that the Jacobian of the G’s with respect to the 
H’s equals one so that it is a gauge transformation. The remaining equation is the 
condition that the Jacobian of the transformation has to be one; this forces the trans- 
formation to be canonical. If a solution is found to this system of equations it is said 
that both sets of coupled differential equations are canonically related. 
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6. Physical systems in Nambu mechanisms 

In this section the definition of a free particle, a harmonic oscillator and other systems 
is presented. The basic criterion to define any one of these systems in Nambu mechanics 
is to retain the structure of the system of differential equations that is known from 
Hamiltonian mechanics. One point must, however, be clarified from the start when 
considering any particular case: the definition of which of the variables spanning phase 
space play the role of coordinates and which play the role of momenta must be specified. 
The first three subsections (6.1 to 6.3) present situations on three-dimensional phase 
space, the other is devoted to four dimensions. 

6.1. The free particle ' 

Consider three-dimensional phase space; in this case it is possible to choose, say, XI as 
the only coordinate and x2 and x3 as the momenta. Then the evolution equations are 
(B and p are non-zero constants) 

dxl/dt =Bx~ + 0x3 dxz/dt=O dx3/dt=O (6.0 

which has the form of the evolution equations for a free particle in Hamiltonian mechan- 
ics in the sense that dx,/dt depends linearly in the momenta. One pair of Hamiltonians 
that give rise to these equations is 

m,, xz, x3) = (Xz+4/2 G ( ~ I , X Z , X ~ ) = - P X ~ + S ~ X J .  (6.2) 

It is also possible to think that there are two coordinates, say, x;  and x i  and only 

dxi/dt =a% dxi/dt = p'x; dxi/dt=O (6.3) 

~ 

one momentum, xj; then the evolution equations are 

with the Hamiltonians 

2H'(x;,  x;, xj) =x;2 = G y x ; ,  x;, x;)=p'x;-mxi. (6.4) 

At this point it is possible to askwhether the system described having two coordi- 
nates and one momentum and the system that has one coordinate and two momenta 
are different or not. To answer it is necessary io, look for a canonical transformation 
that connects both; if this transformation does not exist it is said that both possibilities 
give rise to different physical systems. It turns out that the transformation exists and 
is given by 

kx,=CZ'x;+P'x; (6.5) 

kZx2= -PP'x~ + pB'x$+ kpBx; (6.6) 

k2x,=Brx; -BCZ'x;+kpxj (6.7) 

where #=Bz+Pz=~Z+8,z .  The values of CY and p a r e  not arbitrary but at the same 
time for any and p a pair (a, 8') can be found so that both systems-(6.1) and 
(6.3)-are connected by a canonical transformation. As a result both separations are 
in fact one and the same and as is easily seen they are connected by an orthogonal 
transformation. Thus, the KT theorem allows the definition of only one grouping which 
means only one. physical system, at least for this particular case. 
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6.2. Generalization of the above result 

It is interesting to investigate whether in other cases the two possible groupings in three- 
dimensional phase space are connected by a canonical transformation. A partial answer 
will be given by looking at the case in which phase space is two-dimensional and the 
Hamiltonian is the sum of the kinetic plus potential energy: H ( p ,  q)=p2/2m+ V(q). 
The evolution equations are dp/dt = - V(q)  and dg/dt =p/m; it is the structure of these 
equations that should be maintained when passing to three dimensions. Therefore, the 
evolution equations in case of two coordinates (xI , x2) and one momentum (x,) will 
be assumed to be 

dxl/dt= Ox3 dxz/dt= Px3 dx3/dt = F(a 1 V ;  a 2  V )  (6.8) 
where S2 and P are constants, V= V(XI, XZ), a,V is the partial derivative of V with 
respect to xj  and F(. , .) is an arbitrary function. In case there are two momenta 
(xi, xi) and one coordinate (xi), the evolution equations will be set up as 

dxi/dt=R'x,+px, dx$/dt =fdB/dxi dx;/dt=g dB/dx; (6.9) 
where R', f and g are constants and B= B(xi).  Now assume there is a linear transforma- 
tion that connects both sets of variables in the form x;=m,Gk; then after computing 
the time derivative of both sides and using (6.8) and (6.9) it is found that if m13#0, 
B(xi) must be at most a quadratic function. In fact, take j = 2 ,  then 

dx$/dt=fdB/dxi = (md2+mz$)x3+muF(al V; &V).  (6.10) 
Now, remembering that dB(xi)/df = dB(mllxl +m12x2 +mlg3)/dt and differentiating 
(6.10) with respect to x3 it is found that 

m13d2B/dx;z =mlzS2+mzP (6.11) 
which shows that B is at most a quadratic function of its argument if mI3 #O. Returning 
to (6.10), it is found that its left-hand side is linear in x, and xz so that if it happens 
that F is a linear function of its arguments, v i s  at most a quadratic function of its 
arguments. On the other hand, for any V(xl, x2), F must be chosen so that F(al Y; 
a2V) is a linear function of x ,  and x2. 

Since the only requirement found up to now is m13#0, it is possible to find an 
orthogonal transformation that relates both sets of evolution equations and therefore 
in this case both groupings lead to  the^ same physical system. It may well be that this 
argument can be generalized tpmore general type of Hamiltonians (that are not of the 
kinetic plus potential energy type) but this will not be pursued here. The conclusion 
reached at this point is that in three-dimensional phase space the two groupings allowed 
by the Kalnay and Tascbn (1977) theorem are in fact only one because there is a 
canonical transformation that connects both of them-at leat for the family of systems 
considered in this point. 

6.3. The harmonic osciliator 

The evolution equations of the Nambu harmonic oscillator will be such that the time 
derivative of any variable is a linear combination of all of them: 

dx,/df = Aj,x, (6.12) 
where A ,  are antisymmetric coefficients. In the general form (6.12) there is no guarantee 
that the solution will be oscillatory and certain conditions have to be imposed on the 

1 

: 
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coefficients that follow from writing a solution in the form 

x i ( f )  = Ci exp ibf (6.13) 

where the Ci and b have to be computed from (6.12). Oscillations will be present if the 
roots of the characteristic equation are all real-this corresponds to no damping. Once 
the characteristic equation is written down it is found that, whatever the values of the 
Au there is one vanishing root because the determinant of the A ,  is zero due to the 
structure of the Ngnbu equations. This result is valid whenever phase space is odd- 
dimensional. 

A particularly interesting illustration of this result comes from a naive classical 
version of a simple Hubbard model for superconductivity (Yang 1989, Zhang 1990). 
This is a one-band mpdel (Zhang 1990) defined by the Hamiltonian 

c!, cfS+ h.c.+ U C n,n,d-p C n,s (6.14) 

where t and U are the parameters that define the model and p is the chemical potential 
U stands for spin up, dfor spin down, c:~ and c, are creation and annihilation operators 
for spin s (=U or’d)  located at place r of the lattice, n,=c!, c,, the total number of 
electrons is Nand M is the total number of lattice sites. The operators 

J -  =C (-l)’crccrd J+ =.it_ Jo = (N- M ) / 2  (6.15) 

satisfy the SU(2) commutation relations and in this sense there is an underlying SU(2) 
symmetry for the model. Moreover, the operators J + ,  J -  and JO satisfy the following 
commutation relations with the Hamiltonian H 

[H,  J*1= f (U-2Ir)J* [H,J,]=O. (6.16) 

It is this set of equations that wjll be put into correspondence with a classical Nambu 
triplet. Before doing this the main result of Zhang (1990) will be quoted: the collective 
modes show three eigenfrequencies: 0 and &(U-&). This triplet of collective modes 
appear as poles in the Fourier transforms of the response functions. Now, the classical 
version of this quantum model will be taken as follows: the quantum operators J* and 
Jo are put into correspondence with the variables that span three-dimensional phase 
spa-j,, j,,-and the classical evolution equation for the classical variables will be 
generated by the Nambu bracket for the triplet which will be put into correspondence 
with the quantum bracket through the law ‘i times the quantum bracket-given by 
(6.16)--equals the classical Nambu bracket after replacement of the operators Jt and 
JO by the phase space variables j* and io’. To implement this prescription a pair of 
Hamiltonians have to be determined; these are exhibited in (6.17). The identification is 
in fact the result stated by Nambu (1973) in his study of quantization of the generalized 
Hamiltonian scheme. It is easy to check that the quantum Nambu bracket [J+ , J -  , Ja] 
is equal to the Casimir of SLI(2). On the other hand, if the Hamiltonians in the quantized 
model are taken as Hand Jo then [H,  J0]=0 is equation (40) of Nambu (1973). Since 
H a n d  Jo can be diagonalized simultaneously, the linear relation between H and Jo is 
valid in the weaker form of an equality of matrix elements. In this way all conditions 
stated by Nambu (1 973) are satisfied in the particular case considered. For studies in the 
quantization of Nambu mechanics see Nambu (1973), Bialynicki-Birula and Momson 
(1991) and Sahoo and Valsakumar (1992). 

The classical Nambu system that corresponds to the quantum system just described 
will be constructed requiring that the classical variables evolve in time according to 

H =  -1 
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expressions similar to the ones that appear in the right-hand side of (6.16):This will 
be taken as the '. . . algebraic mapping of the relationships which characterize.. . .' 
(Nambu 1973) but this time in the reverse order, from the quantum to the classical 
case. After this identification, the Nambu triplet ( j +  , j -  , j o )  evolves iu time with the 
two Hamiltonians 

h=j+j-  +j i  g = (U- 2p)jo (6.17) 
which reproduce, at the classical level, equations (6.16). As a result, the system is a 
Nambu oscillator in three-dimensional phase space with frequencies 0 and f (U-2p). 
In this sense this is the classical version of the quantum single band Hubbard model 
summarized in this example (for details of the quantum case see Yang 1989 and Zhang 

Remark 6.1. The case presented bere that relates Nambu triplets with superconductivity 
is a second example of such a correspondence. In Angulo et af (1984) it has been shown 
that another version of superconductivity has a triplet as a substructure of the whole 
system. 

1990). 

6.4. Groupings in four dimensions 

Only the simplest case will be presented: that of a free particle. The evolution equations 
are 

(6.18) 
(6.19) 

with Hamiltonians H = x 2 x 3 - x I x 4 ,  F = x , ,  G = x 3 .  The system (6.18), (6.19) describes a 
Nambu quadruplet that can be interpreted as two Hamiltonian doublets. The conditions 
under which this can be done depend on the existence of a Hamiltonian that performs 
the following task: start with two Hamiltonian doublets and call h, and hz the Hamil- 
tonians that describe the time evolution of each doublet. Now a third fnnction-h3- 
is required in such a way that the two doublets form a Nambu quadruplet. For 
further details.see Perez (1985). A second grouping describes a Nambu system in 
which there is a one-momentum and a three-coordinate. The evolution equations are 
in this case 

Vi=dyi/dt=O V,=afJJ1 (6.20) 
where the als, i=2 ,3 ,4  are constants. The Hamiltonians that generate the system (6.20) 
are h=y,yz-ua+Yly4/a4,f=u~yI, g=u4y3/a3-y4. Now a canonical transformation will 
be looked for so that both systems of evolution equations are related. The transforma- 
tion is written 

Yi=f;(x) (6.21) 
where thef;, i= 1,2 ,3 ,4  are functions to be determined so that after~using (6.18) and 
(6.19) the equations (6.20) are satisfied and moreover, the Jacobian must be unity. The 
resulting equations for t h e 5  are 

Xlafi/aX2+ x3afi/ax4 = 0 x I a j / a x z  + x,ajiax.,= aij-, i = 2 , 3 , 4 .  (6.22) 
After simple manipulation of the second equations in (6.22) it is readily found that the 
only differential equation that has to be studied is 

~ 1 2 F / 2 ~ 2 +  x ~ ~ F J ~ x , = O  (6.23) 
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where F is either fi or any of the combinations A/ai-filaj, i, j=2,3,4.  The general 
solution to (6.23) is 

(6.24) 
where h l ( x l ,  x 3 ,  x4) and h2(xI, xz, x3) are arbitrary functions. With this result at hand 
the differencesfi-h,fi-h andh-f. are explicitly written down. From this it follows 
that the three functionsfi ,f2 andh are not functionally independent so that the Jacobian 
of the transformation is zero. In this way it has been proved that both groupings cannot 
be connected by an invertible transformation-and, aforfiori, by a canonical one. This 
result shows that the grouping into two doublets, although a particular case of a Nambu 
quadruplet, remains separated from the other possible groupings-at least in four- 
dimensional phase space. In the spirit of the general formulation of the KT theorem it 
is possible to word this result as follows: it is not possible to find a set of functions in 
such a way that a system of two Hamiltonian doublets can be considered as a system 
with one momentum and three coordinates. 

Remark 6.2. It is apparent from the above results that the Hamiltonian scheme is a 
particular case of the Nambu one since there is at least one example-four-dimensional 
phase space-in which the Nambu scheme is able to accommodate cases unrelated to 
the Hamiltonian one. 

Remark 6.3. In the case that a transformation is sought to connect a system described 
by a one-coordinate and a three-momentum into a system described by a three-coordi- 
nate and a one-momentum it is easy to show that an orthogonal transformation per- 
forms the task. This is a simple example of a canonical transformation but since we 
are more interested in the existence of one canonical transformation rather than finding 
its most general form it is enough to exhibit one. 
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